If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4975x^2-30x-9=0
a = 4975; b = -30; c = -9;
Δ = b2-4ac
Δ = -302-4·4975·(-9)
Δ = 180000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180000}=\sqrt{90000*2}=\sqrt{90000}*\sqrt{2}=300\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-300\sqrt{2}}{2*4975}=\frac{30-300\sqrt{2}}{9950} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+300\sqrt{2}}{2*4975}=\frac{30+300\sqrt{2}}{9950} $
| 51/2x+2/3x=38 | | C=(6.99)b+25.00 | | 4a+8-2a=7 | | 2x/3-1/2=x+3/4 | | 25y+8y-26y+11y=36 | | (3²x-7)³/9x+1=(3³x-¹)4 | | X(5+×)=x×x+3x+1 | | 7+11=-3(6x-6) | | y-y^2=56-15y | | 6x+8=2(2x+4) | | |x+5|+4=3 | | |x+5|+4=3* | | f(8)=3(8)-2 | | 32y+3y-29y-6y+8y=24 | | 10-2(x+3)=7(x-2)+9 | | 2.25+2.25p=20+1.50p | | 2(3s+8)=22 | | (2s-6)=60 | | (5x+24)=(9x−17) | | -4(2-3x)-(4x+5)-5x+2x-1=0 | | 5w-1/11=3-5/6 | | 1=0.2(x−25) | | 6(x-1)+7=4x+2(2+x) | | 10y-6-4=46.36 | | 4975x^2-30x+9=0 | | 2x-(15-x)=21 | | 6x-0.2+6x=8x+0.3 | | 4x-5.4=41 | | 13-2(5-x)=19 | | 4y+10=6y-50 | | -3=-19+x/5 | | 5x-26=2x+44 |